The Utility of Biometric ID in a National eHealth System

An Essential Building Block to Facilitate Universal Health Coverage

Dominic S. Haazen

Content of Presentation

- ✓ Objectives of a functional integrated eHealth system
- ✓ Rationale for using biometrics
- ✓ Biometrics in management and human resources systems
- ✓ Biometrics in supply chain systems
- ✓ Biometrics and health insurance systems
- ✓ Biometrics and clinical systems
- ✓ Biometrics and patient access to their data
- Challenges in incorporating biometrics
- ✓ Conclusions

Objectives of a functional integrated e-Health system

- ✓ Patient-centered the patient becomes the central subject of the system, including electronic health record, clinical decision support capability and a patient portal to provide access to their own health data and other functions;
- ✓ Integrated, responsive and flexible, providing real-time information;
- ✓ Interoperable with other systems, including those of the private sector and other health stakeholders such as health insurance funds;
- ✓ Used by all levels of the health system: primary care (including community health workers (CHW)), hospital care, public health and social services;
- ✓ Provide quality information at all levels that is reliable and timely;
- ✓ Respond to the strategic directions of the Ministry of Health to help achieve its short, medium and long-term health objectives
- ✓ Be both a clinical and management tool, that meets the needs of health care practitioners, administrators, managers, and directors

Components of an integrated eHealth system

Legend:

Patient data

Management data

Insurance data

Rationale for using biometrics

- Speed of access and ease of use leading to operational efficiencies
 - Biometric identification is easy to use and can quickly identify individuals
 - User do not need to be literate to utilize the technology
 - Biometric characteristics are generally stable over time
- Facilitate access in a secure way
 - Allows access to systems and physical locations and authenticate users
 - Allows the identification and authentication of those eligible to receive services
 - Provides permission to access personal information
 - Eliminates/reduces need for paper-based IDs
- Increase security and reduce fraud
 - Reduce the need for passwords that may be written down or forgotten
 - Increase privacy of personal information by reducing the need to disclose it
 - Allows access to information to be monitored
 - Positively identify those receiving services or coverage

Biometrics in management and human resources systems

- Access control to physical locations and resources
 - Authenticate and control access to facilities
 - Control/record access in restricted areas (OR, ICU, etc.)
- Access control to administrative systems
 - Positively identify those accessing or making modifications to systems
 - Provide audit trail for system updates and other modifications
- Reduce fraud and "ghost workers"
 - Guinea implemented biometric identification of civil servants (including in the health sector) to register all government employees, resulting in the identification of about 11,000 ghost workers (11% of the total), and saving and estimated \$20 million annually
- Time and attendance management
 - Mauritius uses fingerprint identification to record time and attendance for civil servants
 - India has developed a biometric attendance system for civil servants, linked to Aadhaar – data is transparent and available on-line

Primary

Hospital

Biometrics in supply chain systems

Existing approaches

- Biometric access to medical dispensing cabinets, pharmacies
- Biometric authentication for prescribing controlled substances
- Positively identify patients prior to medication administration
- Biometric fingerprint sensors help track vaccination patients
 - Currently implemented in Benin, Kenya, Uganda and Zambia

Approaches under development

- Using biometric identification of health workers and (possibly) patients to record the receipt and distribution of medications
- Bar codes on incoming drugs are scanned, together with health worker ID, and data is stored on the blockchain; when medicine is dispensed, bar code as well as worker and patient ID are scanned, and this is also recorded on the blockchain
- Proof of concept currently being developed by World Bank Blockchain Lab

Biometrics and health insurance (1)

- Insurance eligibility verification
 - Gabon CNAMGS Electronic Registration Cards
 - Cards include civil data, a photograph of the holder, and two digitized fingerprints within the microprocessor ensure encryption and protection of the data.
 - Fingerprint sensors used in health facilities to verify eligibility while protecting the confidentiality of personal data.
 - India RSBY
 - Families are issued a biometric enabled smart card containing their fingerprints and photographs.
 - Card ensures that only real beneficiaries can use the smart card and access insured services.
 - Ghana NHIS
 - Biometric verification at health provider introduced expected to significantly reduce fraud
- Insurance registration and unique identification
 - Ghana NHIS
 - In 2013, the NHIS had 26 million names in their registration database 2 million more than the population of Ghana – currently 7.5 million registered with biometrics and no duplications

Biometrics and health insurance (2)

Premium collection

- Kenya NHIF
 - Biometric national ID card is needed to create an M-Pesa mobile money account, which can be used to make premium payments.

Claims processing and payments

Ghana NHIS

- Identity of member is biometrically authenticated when they seek medical care, and that identify is linked identity to any claim made by the provider on their behalf.
- A positive match generates a unique 13-digit claim verification code (CVC), which the provider adds to the claim form as a biometric signature along with the member's ID, the health provider's ID and other details. Because the CVC can only be generated in the case of a live fingerprint match, it acts as a vital proof of presence to the insurer, demonstrating that the patient was actually there when the claim was made, and ensuring that the claim is valid.
- Verification is done through 3,000 biometric verification devices by health providers across the country.

Chile I-Med

Patients pay copayment electronically using a fingerprint at the doctor's office.

Biometrics and clinical systems

Access control for patient information

- Linking fingerprints to EHR can eliminate the need for patients to carry ID, reduce errors from manually copying patient ID numbers, and decrease processing time
- Biometrics can also be used to access the EHR when the patient is not conscious, such as in a pre-hospital care or emergency room setting
- Authentication and access control of health providers
 - Biometric technology has shown to be a reliable user authentication mechanism it restricts delegation of access rights and discourages fraudulent access or impersonation of users.
 - It also facilitates remote access to EHRs by using a biometric feature as a method of authentication, while maintaining a record of access and/or modification of health records.
- Biometric encryption to increase security of health data
 - Sensitive information can be encrypted based on a biometric feature making the information available only to the person that possesses the relevant biometric characteristic.

Biometrics and patient access to their data

Access control to patient information

- Patients can have access to their personal information (either remotely or at a health facility) by using a biometric feature such as fingerprint.
- The biometric scanner will be able to capture an image of the biometric feature and send it to a centralized system for verification purposes.
- The image is matched with the stored biometric profile of the patient.
- When the identity of the patient is verified the system sends back the information originally requested by the patient.

Authentication and access control for eHealth services

 Biometric technology can be used to access appointment scheduling and other services when accessing a patient portal.

Challenges in incorporating biometrics

Challenge	Potential Mitigation
 Potential false positives and negatives 	 High quality sensors, multi-modal or two-factor identification
 Potential hacking of biometric database 	 Encrypt sensors, store encrypted digital representations rather than biometric images.
 Resistance by employees/patients due to concerns about privacy or cultural issues 	 Communications highlighting the benefits (ease of use, security) Offer alternative modalities that are considered more culturally appropriate
 Cost/logistics of setting up biometrics infrastructure and related databases 	 Biometrics-as-a-Service (BaaS) cloud- based solutions
 Integration with existing eHealth applications 	 BaaS (and variants), biometrics also already incorporated into many commercial and even open source eHealth modules (e.g. OpenMRS)
Potential destruction of biometric sensors to obstruct accountability	 Multi-functional approaches (e.g., same sensor for time/attendance and access to patient records)

Conclusions

- ✓ Biometric technology can be used in all parts of a national eHealth system – whether the system is integrated or not.
- ✓ There are advantages to using biometrics compared to current methods of identification and authentication.
- ✓ A number of issues still exist with current technological solutions, and their integration the into existing eHealth system, so these issues will need to be considered.
- ✓ In developing country contexts, issues of access to electricity as well as internet connectivity also need to be addressed.
- ✓ Nevertheless, good examples of innovation using biometric technology exist across a number of developing countries, and many additional options are being actively explored.

Thank you

